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Abstract12

Animal movement is a key mechanism for shaping population dynamics. The effect of interac-13

tions between competing animals on a population’s survival has been studied for many decades.14

However, interactions also affect an animal’s subsequent movement decisions. Despite this, the15

indirect effect of these decisions on animal survival is much less well-understood. Here, we in-16

corporate movement responses to foreign animals into a model of two competing populations,17

where inter-specific competition is greater than intra-specific competition. When movement is18

diffusive, the travelling wave moves from the stronger population to the weaker. However, by19

incorporating behaviourally-induced directed movement towards the stronger population, the20

weaker one can slow the travelling wave down, even reversing its direction. Hence movement21

responses can switch the predictions of traditional mechanistic models. Furthermore, when22

environmental heterogeneity is combined with aggressive movement strategies, it is possible23

for spatially segregated co-existence to emerge. In this situation, the spatial patterns of the24

competing populations have the unusual feature that they are slightly out-of-phase with the25

environmental patterns. Finally, incorporating dynamic movement responses can also enable26

stable co-existence in an homogeneous environment, giving a new mechanism for spatially-27

segregated co-existence.28
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1 Introduction29

Predicting the survival of populations in competitive environments is a key question in ecology,30

with applications to conservation decisions (Lande et al., 2003), biological invasions (Lewis31

et al., 2016), and management of changing ecosystems (Tylianakis et al., 2008). Indeed, the32

question is not restricted to ecology, with studies existing in fields as diverse as criminology33

(Brantingham et al., 2012) and cancer studies (Gatenby & Gawlinski, 1996). However, predic-34

tion is impossible without an understanding of the mechanisms of species competition, together35

with tools to quantify mathematically their effects on demographic patterns (Murray, 2001;36

Lewis et al., 2016). Animal movement is emerging as an important mechanism underlying37

inter- and intra-species interactions, as the movement decisions that animals make in response38

to these interactions play an important role in shaping the ‘life-path’ of the animal (Nathan39

et al., 2008; Börger, 2016). Although it is reasonable to expect that movement responses to40

competitors could have a big effect on the ability of animals to survive, population dynamics41

models incorporating these factors are rare (Armsworth & Roughgarden, 2005; Morales et al.,42

2010).43

Despite this, inter-population competition is one of the oldest phenomena in ecology to be44

given rigorous mathematical treatment, with the first model dating back to Lotka (1932) and45

Volterra (1926), so popularly termed the Lotka-Volterra competition (LVC) model. Although46

the original LVC model is spatially implicit, and so does not explicitly incorporate animal47

movement, various foundational predictions have been made from its analysis. One is that48

stable co-existence of two competing populations is only possible if intra-population competition49

is stronger than inter-population competition. This situation is called weak competition. In50

contrast, for strong competition, where inter-population competition is more deleterious than51

intra-population competition, the LVC model predicts bi-stability: only one of the populations52

will survive in the long run and the other will die out, with stable co-existence impossible.53

This predicted inability for strongly competing populations to co-exist is sometimes called54

competitive exclusion (Hardin, 1960; Kishimoto, 1990).55
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The existence of bi-stability in the Strongly competitive LVC model (henceforth SLVC56

model) naturally leads to the question of which additional ecological processes may affect57

convergence to one or other of the stable states. Or, to put it in more biological terms,58

which behavioural or environmental factors affect the survival of competing populations? This59

questions leads to a wealth of possibilities for study, which have been the subject of numerous60

works. Examples include those on the effects of environmental heterogeneity (Zhu & Yin,61

2009), predation (Morozov et al., 2008), control efforts (Chen, 2006), and spatial stochasticity62

(Neuhauser & Pacala, 1999). In this paper, we will focus on one specific behavioural factor:63

movement responses to competing populations.64

Incorporating movement of any kind requires that we construct spatially explicit models65

of population dynamics. The simplest way to do this is by adding diffusive movement to a66

spatially implicit model. Although more technical procedures exist for incorporating space67

(Durrett & Levin, 1994), this method provides a base-line starting point for mathematical68

analysis, so remains popular [see e.g. Lewis et al. (2016, Chapter 4) and references therein].69

Indeed, a spatial version of the SLVC model incorporating diffusive movement has been studied70

mathematically by several authors (Dancer et al., 1999; Crooks et al., 2004; Nakashima &71

Wakasa, 2007).72

When environmental features are incorporated into this model, co-existence patterns may73

occur. One set of examples feature non-convex domain shapes (Mimura et al., 1991), mod-74

elling geographic features such as peninsulas or curved valleys. Another include inhomoge-75

neous boundary conditions (Crooks et al., 2004), modelling environmental heterogeneity on76

the boundaries of the population range. However, when the environment is homogeneous and77

convex, as is typical of many ecological situations, then this diffusive SLVC model predicts78

that only one of the competing populations ultimately survives (Kan-On, 1997) [except in the79

fine-tuned situation where competition is essentially equal between the two populations (Brant-80

ingham et al., 2012; Dancer et al., 1999)]. In other words, stable co-existence is essentially never81

predicted by the diffusive SLVC model in homogeneous environments.82
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From the perspective of biological invasions, the diffusive SLVC model predicts that a83

stronger invading population will spread into a weaker native population via a travelling wave.84

The invading population eventually dominates, causing the native population to be wiped out.85

Recently, Girardin & Nadin (2015) gave analytic conditions on the direction of this travelling86

wave, relating the competition strength to species diffusivity, in the limiting case where the87

inter-specific competition is arbitrarily larger than intra-specific competition. In principle, this88

enables prediction of which populations may succeed in an invasion scenario, by understanding89

of the diffusive and competition parameters governing the movement and growth of both native90

and alien populations.91

In this paper, we extend this reaction-diffusion model of strong competition to incorporate92

movement responses between the two populations. This is in part inspired by recent empirical93

studies showing that top-predators change their movement when close to competing predators94

(Vanak et al., 2013). Our aim is to understand the effect of such movements on the spatial95

population dynamics. The key idea is that movement responses may be used by an otherwise96

‘weaker’ population to ‘push back’ the travelling wave, causing a reversal in the eventual fate97

of the populations. Mathematically, these movement responses are encoded in an advection98

term, leading to a system of reaction-advection-diffusion equations. These naturally combine99

the advection-diffusion equations of taxis models (Lewis & Murray, 1993; Potts & Lewis, 2014)100

with the reaction-diffusion equations of spatial population dynamics (Namba, 1989; Durrett101

& Levin, 1994; Tilman & Kareiva, 1997). Roughly, the ‘advection’ term means that we are102

including directed motion (sometimes called ‘taxis’), the ‘reaction’ term refers to birth and103

death processes, and the ‘diffusion’ term to the unknown drivers of movement, modelled as a104

random process.105

Despite these three aspects being clearly important to demographic dynamics, the com-106

bination of all three is rare in mathematical ecology, with most studies focussing on either107

‘advection’ or ‘reaction’. Although a few exceptions exist – such as prey-taxis studies (Kareiva108

& Odell, 1987; Lee et al., 2009) and stratified diffusion (Shigesada et al., 1995) – these represent109
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just the tip of the iceberg regarding taxis properties in response to external or internal cues:110

e.g. competing predators moving in response to the presence of the other population (Vanak111

et al., 2013; Potts et al., 2013), prey avoiding places where predators live (Latombe et al., 2014;112

Bastille-Rousseau et al., 2015), and so forth. Since statistical and data-collection techniques113

are beginning to uncover such movement responses (Vanak et al., 2013; Potts et al., 2014;114

Hays et al., 2016), it is important for theoretical studies to catch-up with the data analysis by115

examining the effect of taxis on population dynamics.116

Our work represents a key step in this direction. In particular, we seek to answer two117

questions: (i) Can taxis responses enable a population to ‘punch above its weight’ in compe-118

tition with another population, causing it to survive when otherwise it would die out? (ii)119

Under what circumstances might such movement processes lead to co-existence of multiple120

strongly-competitive populations? It is often believed that such co-existence can only occur121

when relatively complex ecological processes are involved, often involving environmental het-122

erogeneity (Amarasekare, 2003). Here, we hypothesise that movement responses can provide123

a new mechanism of co-existence between strongly competitive competitions (Hardin, 1960;124

Barabás et al., 2016).125

2 Static movement response126

We begin by examining the case where animals have a fixed movement response to foreign127

populations. In the next section, we examine the effect of allowing this to vary over time.128

2.1 The Model129

In this section, our model considers two competing populations of animals, whose distribution130

functions are given by u(x, t) and v(x, t), where x denotes position (in one- or two-dimensions)131

and t is time. These populations could be thought of either as two different species, or two132

groups (e.g. packs, flocks or tribes) from the same species. They are both assumed to be133

competing for space in the same ecological niche, so animals from one population have a134
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negative effect on the population growth of the other population. In the absence of such135

competition, we assume that each population exhibits logistic growth.136

Our model is based on the Lotka-Volterra competition model (Lotka, 1932; Volterra, 1926),137

but also incorporates movement in two different ways. First, movement is assumed to have a138

diffusive aspect, modelling the spread of each population over time, a property that has been139

considered in several previous works [e.g. Kan-On (1997); Dancer et al. (1999); Murray (2001);140

Girardin & Nadin (2015)]. Second, each population exhibits taxis in response to the presence of141

the other population. As far as we are aware, this second aspect is a novel addition to Lotka’s142

competition model. However, competition models where taxis is mediated by a chemical have143

been considered (Painter & Sherratt, 2003; Horstmann, 2011; Stinner et al., 2014), usually in144

the context of cell biology, and have some resemblance to our model.145

The equations describing our model are as follows146

∂u

∂t
= D∇2u︸ ︷︷ ︸

Diffusive movement

− c1∇ · [u∇v]︸ ︷︷ ︸
Taxis towards v

+ ru(K − u)− a1uv︸ ︷︷ ︸
competition dynamics

, (1)147

∂v

∂t
= D∇2v︸ ︷︷ ︸

Diffusive movement

− c2∇ · [v∇u]︸ ︷︷ ︸
Taxis towards u

+ rv(K − v)− a2uv︸ ︷︷ ︸
competition dynamics

. (2)148

149

Here, c1 and c2 represent the strength of taxis response by u and v, respectively. Parameters150

a1 and a2 denote the deleterious effect of competition on the population sizes of u and v,151

respectively, r is the infinitesimal growth rate of each population, and K is the carrying capacity152

of the environment.153

Equations (1-2) bear some similarity to cross-diffusion. The difference is that, in cross-154

diffusion models, the taxis terms ∇· [u∇v] and ∇· [v∇u] are replaced with cross-diffusion terms155

of the form ∇2[(αuuu+ αvuv)u] and ∇2[(αuvu+ αvvv)v], respectively (Shigesada et al., 1979).156

(Here, αuu, αuv, αvu, αvv are constants.) Confusingly, the term ‘cross-diffusion’ has occasionally157

been used instead of ‘taxis’ in some works, for example the predator-prey model of (Tsyganov158

et al., 2004). However, we are not aware of any studies prior to this one that combine taxis159
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terms of the form ∇ · [u∇v] and ∇ · [v∇u] with Lotka-Volterra-type competition models.160

From a biological perspective, the taxis mechanism from Equations (1-2) can be understood161

in a number of ways. One occurs when animals can directly observe the density of the foreign162

population in their immediate vicinity (e.g. by sight or touch). Then they can use these163

observations to choose whether to adjust their movement in response to the density gradient.164

If ci is positive (i = 1 or 2) then the tendency will be to move from lower to higher population165

densities. If ci < 0 then the tendency will be in the other direction: from higher to lower166

densities. This interpretation of the taxis term in Equations (1-2) could work well for small167

animals that densely populate their habitat, so that they can easily detect the local population168

density by sensing the animals around them. Such an interpretation could also be applied169

beyond the animal kingdom, for example to populations of moving cellular organisms.170

However, larger creatures (e.g. ungulates, canids, big cats, etc.) are likely to be more171

sparsely populated on the landscape than very small ones. As such, large animals could con-172

ceivably be well within another population’s range and yet not be observing directly any of the173

animals that live there. Nonetheless, there are biological mechanisms of indirect observation by174

which such animals can still detect the probability of being in the range of a foreign population,175

even when other animals are not physically present. Such mechanisms can be broadly split into176

two categories: (i) extrinsic signals, where one population leaves signs of its existence in the177

physical landscape (e.g. by marking the terrain with urine or faeces), and (ii) intrinsic signals,178

where occasional interactions between animals of the two populations leave traces in the spatial179

memory of the animals involved, informing them of the range of the foreign population (Potts180

& Lewis, 2016b).181

Biologically, examples of responses to extrinsic signals abound in both intra-species (King,182

1973; Stamps, 1977; Kimsey, 1980; Smith et al., 2012; Potts et al., 2013) and inter-species (Nieh183

et al., 2004; Seppänen et al., 2007; Hughes et al., 2010) spatial competition. Intrinsic signals –184

i.e. using memory – are harder to detect directly, but have been posited as a key mechanism185

behind animal movement and spatial distribution (Fagan et al., 2013). Furthermore, movement186
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responses to knowledge of the past positions of animals are increasingly being detected in animal187

populations, between populations of both different species (Seppänen et al., 2007; Latombe188

et al., 2014; Vanak et al., 2013) and the same species (Potts et al., 2014).189

Mathematically, when indirect movement responses to foreign populations are modelled,190

they lead to advection by each population in response to the distribution of the other population191

[see Potts & Lewis (2016a) in the case of extrinsic signals and Potts & Lewis (2016b) for intrinsic192

signals]. This often turns out to be very similar to the taxis response that appears in Equations193

(1-2). To illustrate this, an example of how these taxis terms arise from indirect interaction194

processes is given in Supplementary Appendix A, in the case of scent-marking. Here, the key195

assumption is that the distribution of scent marks tend towards an equilibrium state at a much196

faster rate than the population distributions. In scenarios where such assumptions are valid,197

Equations (1-2) are appropriate for modelling movement responses to foreign populations due198

to indirect extrinsic or intrinsic signals, as well as direct inter-animal sensing.199

In this paper, we consider the case of strong competition, where a1, a2 > r in Equations (1-200

2). For the spatially implicit model, given by setting c1 = c2 = D = 0 in Equations (1-2), it is201

well-known that there are two stable steady-states for strong competition, given by u = (K, 0)202

and (u, v) = (0,K). The final state of the dynamical system is then determined purely by its203

initial condition (Lotka, 1932; Murray, 2011). By explicitly incorporating space, our aim is to204

investigate whether taxis may reverse the predictions of spatially implicit models.205

We use the 1D version of the model in Equations (1-2) to enable faster numerical in-206

vestigation, noting that the analogous 2D model gives almost identical results in test cases207

(Supplementary Appendix B). Our system is defined on an interval 0 ≤ x ≤ L with zero-flux208

boundary conditions, meaning that the net migration at each end of the interval is zero, i.e. as209

many animals leave the interval as arrive. To reduce the number of parameters in our model,210

for easier analysis, we introduce the following dimensionless parameters211

x̃ =
x

L
, t̃ =

tD

L2
, ũ(x̃, t̃) =

u(x, t)

K
, ṽ(x̃, t̃) =

v(x, t)

K
, r̃ =

rKL2

D
, ãi =

aiKL
2

D
, γi =

ciK

D
, (3)212

213
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for i = 1, 2. Then, dropping the tildes over the letters to ease notation, we arrive at the214

following system of dimensionless equations, defined on the interval 0 ≤ x ≤ 1,215

∂u

∂t
=
∂2u

∂x2
− γ1

∂

∂x

[
u
∂v

∂x

]
+ ru(1− u)− a1uv, (4)216

∂v

∂t
=
∂2v

∂x2
− γ2

∂

∂x

[
v
∂u

∂x

]
+ rv(1− v)− a2uv, (5)217

218

which are subject to the following zero-flux boundary conditions219

{
∂u

∂x
− γ1

[
u
∂v

∂x

]} ∣∣∣∣
x=0,1

= 0, (6)220 {
∂v

∂x
− γ2

[
v
∂u

∂x

]} ∣∣∣∣
x=0,1

= 0. (7)221

222

We solve Equations (4-7) numerically for a variety of parameter values, given as follows. We223

set γ1 = 0 and a2 = 2000 and have initial conditions such that u starts on the left and v on the224

right, with equal population densities. Specifically, u(x, 0) and v(x, 0) are smooth monotonic225

functions such that u(x, 0) = 1 for x < 0.5 − ε, u(x, 0) = 0 for x > 0.5 + ε, v(x, 0) = 0 for226

x < 0.5 − ε, and v(x, 0) = 1 for x > 0.5 + ε, and ε is arbitrarily small (see Figure 1a; see227

also Supplementary Appendix C for details of the choice of ε). We let the parameters r, γ2,228

and a1 vary. However, we insist that a1 < a2 = 2000, so that u is the stronger population.229

We also insist that r < a1 so that we are in the parameter regime corresponding to strong230

competition. Finally, we set γ2 ≥ 0, so that v employs an aggressive movement strategy in an231

attempt to out-compete u. The particular parameter values we investigate fall into the regions232

0.02 ≤ r/a2 ≤ 0.75 and 0.85 ≤ a1/a2 < 1. Supplementary Appendix C gives details of the233

numerical methods used to study this system.234

2.2 Results235

In our simulations, one of two constant steady-state solutions is always reached, which corre-236

spond to the predictions from spatially implicit analysis (Lotka, 1932; Murray, 2011). Denoting237
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the steady states by u∗(x) = limt→∞ u(x, t) and v∗(x) = limx→∞ v(x, t), these solutions are238

either u∗(x) = 1 and v∗(x) = 0, so we say ‘u wins’, or u∗(x) = 0 and v∗(x) = 1, so we say239

‘v wins’. Figure 1b displays the regions of parameter space where there is a switch from u240

winning to v winning. Notice that increasing γ2 (the strength of aggressive movement by v)241

enables v to win even when it is weaker than u: i.e. when a1 is smaller than a2. Thus we see242

movement triggering a switch in the predictions of the spatially implicit analysis.243

The explanation for this switch in fortunes of u and v can be understood by leveraging244

the idea of a travelling wave solution. Technically, for such a solution to exist, Equations (4)245

and (5) must be solved on an infinite line. However, due to the complexity of the system, we246

are unable to calculate this analytically (in fact, exact travelling wave speeds are not known247

even where γ1 = γ2 = 0), and numerics require using a bounded line-segment. Moreover, the248

numerical solution of a diffusion-reaction system in a finite domain is known to approximate the249

stable travelling wave solution with high precision over the time when the front is sufficiently250

far away from the domain boundary, and hence the perturbation induced by the boundary251

is small (Murray, 2001; Fife, 2013; Lewis et al., 2016). As such, we numerically measure252

an approximate travelling wave speed using the system defined on [0, 1] in Equations (4-7).253

Supplementary Appendix C details the numerical method used.254

In the case γ1 = γ2 = 0, Girardin & Nadin (2015) show analytically that the asymptotic255

travelling wave speed (when the system is defined on an infinite line) is positive (rightward) in256

the limit as ai →∞ (i = 1, 2) with a1/a2 < 1 kept constant. Our numerical analysis suggests257

that this result is also true away from this limit (Supplementary Table ST1). However, if γ2 is258

increased, with γ1 = 0 fixed, then population v advects against the direction of the u-travelling259

wave, pushing it back. This has the effect of slowing the wave down, even reversing its direction260

if the advective motion is strong enough.261

In Figures 2 and 3, we plot the critical value of γ2 at which the wave-velocity switches262

direction from positive (right) to negative (left) for various values of r and a1 such that r <263

a1 < a2 = 2000. This critical aggression speed is denoted by γ∗2 . Values of γ∗2 correspond264
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exactly with the points at which the fate of u switches from extinction to dominance (Figure265

1b). Therefore the travelling wave velocity provides a convenient way to measure the ultimate266

fate of u and v.267

Two interesting non-monotonic relationships arise from this analysis. The first is shown in268

Figure 2. As the infinitesimal reproduction rate, r, is increased from 0, the critical aggression269

speed, γ∗2 , decreases initially. This is due to the increased ability of population v to reproduce270

and grow having made aggressive moves into u’s area. However, as r is increased towards271

a1, we are moving closer and closer towards the region where a1 < r < a2, which is a region272

where u always wins, no matter what the advection strength or initial conditions. As such, γ∗2273

increases as r → a1.274

The second non-monotonic relationship is the subject of Figure 3. Here, we see that aggres-275

sive movement strategies are only advantageous up to a point. Although, for certain values of276

a1/a2, increasing γ2 can cause the travelling wave to reverse direction, further increases in γ2277

can cause the travelling wave to switch once more, meaning that v eventually dies out if it is278

overly aggressive. The reason for this reversal in fortunes can be understood by examining the279

transient state of the travelling wave solutions (Figure 4; Supplementary Videos SV1, SV2).280

Just after time t = 0, a group from population v pushes into the range of population u, creating281

a non-monotonic population profile. This then dies out leaving the front of v less steep than282

for lower γ2. Consequently, the size of v at the population overlap is too small to push v into283

u, even with the help of a strong advective effect.284

2.3 Incorporating environmental heterogeneity285

In heterogeneous environments, the reproduction rate, r, will vary over space if certain parts286

of the landscape are more conducive to survival and reproduction than others. Because the287

sign of the travelling wave speed depends on r (Figures 2 and 3), we sometimes observe species288

co-existence in such landscapes. This will happen if the parameters on the left-hand side of289

the terrain are in the correct regime for a rightward travelling wave, and the parameters on290
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the right-hand side are such that travelling waves move leftwards. Some example situations291

where this happens are given in Figure 5. Interestingly, the spatial pattern of the population292

distributions are slightly out-of-phase with the spatial pattern of the environment. Indeed,293

in the area of poorer resources, and close to the edge between the two habitats, the total294

population density is slightly lower than the carrying capacity. Notice that this co-existence295

phenomenon only occurs when there is both taxis in response to foreign populations and spatial296

variation in r. Without the former, the travelling wave direction will always be to the right if297

a1 < a2 (left if a1 > a2), regardless of the value of r.298

3 Dynamic movement response299

In the model given by Equations (4-7), we assume that the movement responses of each popu-300

lation, given by γ1 and γ2, are constant. In reality, animals may be able to alter their response301

mechanism, depending on the current situation. As shown in Section 2, if a population is302

being pushed back by a travelling wave of advancing foreign population, it may benefit the303

former population to move aggressively towards the latter. However, if the former population304

is not being pushed back then there is no benefit in such aggressive movement. Indeed, from305

the individual’s perspective, there is a negative effect of moving aggressively towards the other306

population, as interactions with the other population are more likely to have a negative effect307

than interactions with its native population. Therefore there is a trade-off between making308

aggressive movements for the social benefit of a declining population, and retreating from ag-309

gressive encounters for individual benefit. In this section, we explore the demographic patterns310

that arise from this trade-off, by allowing the aggression parameters, γ1 and γ2, to vary over311

time depending on whether animals sense a decline or increase in foreign population density.312

3.1 The Model313

We begin with the model given by Equations (4-7) but replace the constants γ1 and γ2 with314

functions γ1(x, t) and γ2(x, t). As a population senses that a travelling wave of a foreign popu-315
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lation is intruding into its range, it will increase its aggression towards the foreign population.316

Therefore, if u(x, t) is increasing at some point x, γ2(x, t) will increase. Likewise, an increase317

in v(x, t) leads to an increase in γ1(x, t). A simple model of this is given as follows318

∂γ1
∂t

= β
∂v

∂t
,

∂γ2
∂t

= β
∂u

∂t
, (8)319

320

where β is a constant. By integrating with respect to t, we see that Equations (8) have the321

solutions γ1(x, t)−γ1(x, 0) = β[v(x, t)−v(x, 0)] and γ2(x, t)−γ2(x, 0) = β[u(x, t)−u(x, 0)]. For322

convenience, we assume that there is no advection at time t = 0, so that γ1(x, 0) = γ2(x, 0) = 0.323

By placing γ1(x, t) = β[v(x, t) − v(x, 0)] and γ2(x, t) = β[u(x, t) − u(x, 0)] into Equations324

(4-7), we arrive at the following equations, which give the study system for this section325

∂u

∂t
=
∂2u

∂x2
− β ∂

∂x

[
(v − v0)u

∂v

∂x

]
+ ru(1− u)− a1uv, (9)326

∂v

∂t
=
∂2v

∂x2
− β ∂

∂x

[
(u− u0)v

∂u

∂x

]
+ rv(1− v)− a2uv, (10)327 {

∂u

∂x
− β(v − v0)

[
u
∂v

∂x

]} ∣∣∣∣
x=0,1

= 0, (11)328 {
∂v

∂x
− β(u− u0)

[
v
∂u

∂x

]} ∣∣∣∣
x=0,1

= 0, (12)329

330

where u0(x) = u(x, 0) and v0(x) = v(x, 0). We solve Equations (9-12) numerically for the same331

parameter values and initial conditions as for the static model in Section 2 (see Supplementary332

Appendix C for details of the numerical methods).333

The appearance of u0(x) and v0(x) in Equations (9-12) means that the system depends for334

all time on its initial conditions. Hence they are crucial to the long-term behaviour and must335

be chosen carefully. From a mathematical point of view, any number of initial conditions could336

be considered. However, we have chosen biologically-relevant initial conditions that mimic a337

likely ‘first contact’ scenario between two competing populations, whereby one population is338

predominantly on the left-hand side of the interval and the other on the right (see Figure 1a).339

These conditions are especially pertinant if either (a) one population has arrived as an invasion340
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event, or (b) the populations were originally non-contiguous (so not competing), but then the341

range of one expanded over time towards the range of the other.342

3.2 Results343

For a large range of parameter values, the system in Equations (9-12) reaches a co-existence344

steady state, with population u mainly concentrated on the left-hand side of the terrain and v345

on the right (Figure 6, bottom panels). In particular, for given values of a1, a2, and r, within346

the range we examined, there is a critical value of β above which co-existence is observed347

in Equations (9-12), and below which the steady-state solution is u∗(x) = 1 and v∗(x) = 0.348

We denote this critical value by β∗ and plot it for various a1 and r in Figure 6 (top panels),349

with a2 = 2000 kept constant (as in Section 2.1). To our knowledge, this is the first time350

that co-existence has been observed in a model of strong competition inside an homogeneous351

landscape.352

Two clear trends emerge. First, β∗ decreases as a1 increases towards a2. The reason for353

this is that the competitive advantage of u becomes more marginal the closer a1 is to a2, so354

the rate of change of γi (the strength of aggressive movement) does not need to be as high for355

co-existence to emerge. Second β∗ depends in a non-monotonic fashion on r. For each value356

of a1, the curve attains a minimum at some critical value of r between 0 and a1. This mirrors357

the trend seen in Figure 2 and can be explained in an identical fashion (see Section 2.2).358

4 Discussion359

Movement is often cited as key to spatial population dynamics (Nathan et al., 2008; Morales360

et al., 2010). In particular, it is well-known that animals often adjust their movement in361

response to the presence of competitors. Here, we have shown that such responses can dramat-362

ically effect the ability of populations to survive. By employing a tactical movement strategy363

up the density gradient of a competing population, an otherwise weaker population can survive364

and even dominate, causing its competitors to be eliminated from the landscape. When ani-365
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mals are able to modify these movement strategies over time, co-existence of strongly competing366

populations is possible, even in an homogeneous environment. This calls into question assump-367

tions about the conditions under which one population will exclude competing populations368

from space (Barabás et al., 2016).369

The reason for this effect of movement responses can be intuitively understood by consid-370

ering what happens to a travelling wave, moving from the stronger population into the weaker.371

If the weaker population begins to advect up the density gradient of the stronger population372

then it may be able to push the travelling wave back, even reversing its direction. Thus, in the373

long run, the otherwise ‘weaker’ population may be able to win the competition for survival.374

In reality, however, the stronger population may notice that it is being dominated and so em-375

ploy a similar movement strategy in response, slowing the wave down. We have shown that, by376

dynamically altering their responses in such a fashion, the travelling wave will often stop mov-377

ing, enabling competing populations to co-exist on the landscape (Figure 6). Mathematically,378

the resulting system involves a taxis response that is both gradient- and density-dependent.379

Responses that involve density dependence can arise from a variety of biological mechanisms380

(Kareiva & Odell, 1987; Petrovskii & Li, 2003), suggesting that there may be other scenarios381

where co-existence may emerge as a result of taxis mechanisms.382

Without density-dependence, incorporating resource heterogeneity into the model can en-383

able co-existence of both populations (within certain parameter ranges). Co-existence due384

to the interplay of movement and resource heterogeneity has also been observed by previous385

studies [e.g. Amarasekare (2003),Débarre & Lenormand (2011)]. However, these models of-386

ten assume that each set of environmental conditions differentially affects the growth rate of387

different populations. A key outcome of our model is that the two populations can have the388

same intrinsic growth rate at each point in space, but spatially segregated co-existence may389

yet occur (Figure 5).390

Although taxis mechanisms can be helpful for population survival, our numerical experi-391

ments demonstrate that the usefulness is limited. It will not always be possible for populations392
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to push back a travelling wave in a strongly competitive scenario, for example if they are sig-393

nificantly weaker. What’s more, if they push too fast, movement can have a deleterious effect394

(Figure 3). Here, the aggressing population finds itself relatively isolated from the rest of the395

group, and cannot sustain its existence in the face of the numerous and strong competitors396

(Figure 4). Thus this isolated sub-group dies out, leaving the population weakened and so397

unable to push the travelling wave back. As such, courage becomes fool-hardiness if too much398

aggressive movement is in play, and populations must seek a balanced approach to survive.399

Our mathematical model of taxis ‘up the density gradient’ can be viewed as modelling any400

one of a number of biological mechanisms. For small, high-density organisms, it may be possible401

to sense directly the change in population density gradient, for example by sight or touch.402

However, for other organisms, the density gradient might be inferred from traces left in the403

environment by competitors (Nieh et al., 2004; Seppänen et al., 2007; Hughes et al., 2010), for404

example by scent-marking. Alternatively, some species might determine the possible presence405

of competitors by remembering places where competitors were recently observed (Vanak et al.,406

2013; Potts & Lewis, 2016a). All three interpretations can be modelled by the sort of reaction-407

advection-diffusion equations we have studied here. Indeed precise mathematical links between408

reaction-advection-diffusion equations and both direct (Kareiva & Odell, 1987) and indirect409

(Potts & Lewis, 2016a,b) interactions can be made.410

Despite this, there are limitations of reaction-advection-diffusion equations for modelling411

animal interactions. If the interactions are direct then coupling them through a density function412

requires there to be a suitably large number of animals so that the continuum description a413

good representation of the presence of actual animals (Durrett & Levin, 1994). Otherwise, it is414

necessary to use a stochastic individual-based model [e.g. Giuggioli et al. (2011)]. If interactions415

are indirect via marks on the environment, then the population density function will only416

accurately mirror the presence of marks if the distribution of the marks equilibriates quickly417

compared to the probability distribution of the animals (see Supplementary Appendix A).418

Finally, if some individuals exhibit long-range movements then an integro-difference formulation419
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may be more realistic than reaction-advection-diffusion equations and can lead to different420

dynamics (Lewis et al., 2016; Kawasaki et al., 2017).421

Our results highlight the importance of gathering detailed movement data on co-moving422

populations, as well as examining the effects on movement of direct and indirect interactions423

between populations and species. Simply measuring the growth and competition parameters424

may not be enough either to understand why competing populations might co-exist, or predict425

future demographic dynamics. Techniques for measuring movement responses to such inter-426

actions have been increasingly developed and employed over recent years (Vanak et al., 2013;427

Langrock et al., 2014; Latombe et al., 2014; Potts et al., 2014). Therefore it would be a timely428

development to begin to factor the output of such data-inference into mechanistic models, to429

give more accurate predictions of demographic dynamics.430

From an applied perspective, our results have potential important application for under-431

standing biological invasions (Gatenby & Gawlinski, 1996; Lewis et al., 2016). If species are432

able to utilise the type of movement responses studied here, they may end up slowing down or433

pushing back a biological invasion of a competing species. This could ultimately lead either to434

species co-existence, or to failure of a species to invade in a situation where current modelling435

might predict invasion success. As such, accurately predicting the speed and efficacy of an436

invasion may require an understanding of the movement responses of one species to another.437

As well as these applied challenges, we highlight the need for greater analytic understanding438

of the model studied here, as well as its variants (e.g. incorporating verious taxis resposes into439

predator-prey models, or models of more than two interacting species etc.). At present, the440

best understanding of travelling-wave solutions to spatial SLVC models are given in Girardin441

& Nadin (2015). There, quite advanced analytic techniques were required to give exact bounds442

on the travelling-wave speed in a simplified version of our system. In particular, no advective443

term was present, so movement is simply diffusive, and inter-species competition is arbitrarily444

stronger than intra-species competition. To extend these results to gain analytic insight into the445

models studied here would require significant mathematical effort. One possible way forward446
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might come by leveraging the techniques from the genetics literature that lead to ‘Bartonian447

waves’ (Barton, 1979; Jansen et al., 2008). However, our results suggest that this effort is much448

needed, both for theoretical and applied ecology.449

In summary, our work has brought to light the necessity for better connections between450

organism movement and populations dynamics. On the empirical side, we encourage greater451

attention to measuring movement responses to foreign populations when attempting to under-452

stand demographic dynamics. On the theoretical side, our work opens up the need for deeper453

examination of the effects of advective responses on population dynamics.454
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Fig. 1. Switch in fate due to movement strategies. Panel (a) shows the initial
conditions of two populations, u and v, in our numerical analysis. Fixing γ1 = 0, and
a2 = 2000, panel (b) shows which of u and v end up winning for different values of r, a1, and
γ2 (see Equations 4 and 5). For each value of r, below and to the left of the corresponding
line, we see u winning, as predicted by non-spatial analysis. Above and to the right, we see v
winning, in contradiction to the spatially implicit predictions. Crosses denote places where
the travelling wave speed was measured to be zero.
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Fig. 4. Transient dynamics of different aggression levels. The top row shows the
space use at three points in time when the aggression speed of v is enough to push back the
travelling wave. Parameters are a1 = 1900, a2 = 2000, γ1 = 0, γ2 = 5, r = 150, and times t
are shown in the panels. In the bottom row, the aggression speed is excessive and the system
ends with v’s demise. Here, parameters are the same as in the top row, except γ2 = 20.
Animations can be found in Supplementary Videos SV1 and SV2. Note that the
non-monotonic profile for t = 0.00005 is not a numerical artifact: it still exists when the
time-step ∆t for the numerics is over 104 times less than the time over which the
non-monotonic profile appears.
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Fig. 5. Co-existence of strongly competing populations in heterogenous
environments. When the environmental conditions cause the reproductive rate, r, to vary
over space, it is possible to observe co-existence of populations. Space use is plotted when
u(x, t) and v(x, t) are at steady-state, denoted by u∗(x) and v∗(x) respectively. Parameters
(for both panels) are a1 = 1750, a2 = 2000, γ1 = 0, γ2 = 5, with r(x) varying over space as
shown in the panels.
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Fig. 6. Co-existence of strongly competing populations in homogeneous
environments. Here, we analyse the model from Equations (9-12), where the advection is
density dependent. The top-left panel shows the values of β∗, above which the system
converges to a co-existence steady-state, and below which u wins and v goes extinct. The
top-right panel shows cross-sections of this surface for various values of a1/a2. The bottom
two panels show example co-existence steady-states for different parameter values. When β is
just larger than β∗ (bottom-left) u maintains a larger population than v, whereas for much
larger β, the stable population distributions of u and v are of more similar sizes, with u only
slightly larger than v.
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